DCAM-API

Function Reference

August 2013

HAMAMATSU

DCAM-API Function Reference (August 2013)

READ BEFORE USE

This document and the software sample codes are internal documents of HPK and
are disclosed upon request in order to enable the user to create an application
using a HPK digital camera.

This document and the software sample codes are disclosed only for the purpose
described above, and do not constitute a license, transfer, or any other entittement
for the owner.

All of risk and result of using software depending on this document remains with the
user.

This document may include technical inaccuracies or typographical errors.

HPK does not guarantee any damage arising from such errors or this document.

HPK makes no commitment to update or keep current the information contained in
this document.

All brand and product names are trademarks or registered trademarks of their
respective owners.

HPK has copyright of this document with all rights reserved.

No part of this documentation may be reproduced, transmitted, transcribed, stored
in a retrieval system, or translated into any language or computer language, in any
form, or by any means, in any means, electronic, mechanical, magnetic, optical,
chemical, manual or otherwise, without the prior written permission of HPK.

HAMAMATSU

DCAM-API Function Reference (August 2013)

INTRODUCTION

This manual describes the DCAM-API specification used to operate digital cameras
manufactured by HAMAMATSU (hereafter referred to simply as “digital cameras”).
The DCAM-API software development kit is referred to as the “SDK”. The DCAM-
API portion that controls the digital cameras is referred to as the “module”.

The SDK consists of source code for a module and a sample application to show
how to access DCAM-API. SDK users are free to use the software in any way they
like, such as partially modifying source codes and creating completely separate
programs.

This SDK is designed to be particularly easy to understand. For this reason, the
number of functions has been limited to the minimum, and function calling formats
are written in the C programming language.

An extended function is also defined which advanced integrators to control the
additional functionality of a digital camera and/or specific interface can use.

Numeric values appearing in this text may differ depending on the digital camera
used to capture images. Numeric values should be regarded simply as guides, and
not as exact values.

HAMAMATSU 3

DCAM-API Function Reference (August 2013)

OVERVIEW

Layer structure

Digital cameras can be generally classified by the connections used; some use
digital interface connections with a frame grabber, while others may use IEEE-1394
or USB interface connections.

When using a digital interface connection, a serial port is required for sending
control commands and a frame grabber for receiving digital data. The user must be
able to use these two ports skillfully in order to control the digital camera.

IEEE-1394 and USB connections also require their own appropriate control.

DCAM API
Application Modules
Frame
DCAM Module Grabber Libraries
for
—‘ Digital I/F RS-232C
DCAM Module OHCI 1394
for Library
—| OHCI IEEE-1394
J DCAIVfIOI\:IoduIe Hamamatsu USB
USB driver

Mechanism

The camera specific interface buses and libraries are suppressed with DCAM-API.
You only need to access the DCAM-API layer. The Modules layer is reserved for
advanced DCAM-API integration. Modules can be added periodically to your
system to give you access to new cameras and new interface technologies without
having to recompile your software.

HAMAMATSU

DCAM-API Function Reference (August 2013)

Types of functions
DCAM-API functions can be grouped into a number of types.

» Initialization / termination processing

e Camera information acquisition

» Parameter setting and acquisition

e Capture control

» Accessing of image data and bitmap data
+ Extended

The DCAM-API does not contain routines for displaying images. Because a number
of methods for displaying images can be envisioned, depending on the application,
it is not possible to support all of these through modules. When installing display
routines, the camera status is checked and the image refresh timing detected, and
images are drawn at that timing. For more detailed information, please see the
sample source codes.

Terminology
Capture mode

This is the mode in which images are captured by the camera.

Snap This captures image data. It is used mainly for
capturing data for single images.
Sequence This is used to capture image data continuously.
Image units

Normally, images are two-dimensional, with a vertical and horizontal direction.

Frame This is one unit used for image data. For one
frame, the data for one pixel is aligned from left to
right and top to bottom. This is the unit for a
series of image data.

Frame Frame Frame

allocated frames

HAMAMATSU 5

DCAM-API Function Reference (August 2013)

Trigger mode

The cameras can capture images with and without synchronization to external
signals. We call this option "Trigger mode" and you can change this option with
dcam_settriggermode(). We also call the external signals as "External Trigger".

Internal trigger mode

Edge trigger mode

Level trigger mode

Software trigger mode

TDI trigger mode

TDI internal trigger mode

Start trigger mode

Synchronous readout trigger mode

External trigger polarity

Positive logic

Negative logic

Camera status

In this mode, the camera does not synchronize
with external trigger. Camera runs freely with self
timing.

Exposure begins at the timing at which external
triggers are switched. A specified time is used for
the exposure time.

The level of the external triggers is set to a certain
period of exposure time.

The camera starts capturing when the trigger
comes from the host software by the
dcam_firetrigger() function. The camera will not
accept triggers from other equipment.

Each external trigger shifts image on the sensor
vertically one line at a time while reading out one
line of image data.

This is same as TDI trigger mode except this
mode does not require external trigger. Camera
runs with self timing.

The camera waits for an external trigger to
change trigger mode to internal trigger mode and
output image.

The trigger starts the read out of the current
exposure and starts a new exposure. The
exposure time is the period between two triggers.

Exposure begins at the rising edge in Edge mode,
and at H level in Level mode.

Exposure begins at the falling edge in Edge
mode, and at L level in Level mode.

The camera status determines which functions you can call. Some functions can
change the camera status. There are four camera statuses as described below.

UNSTABLE

STABLE

READY

BUSY

Parameter settings and other functions are called,
but are not in the status in which they were set.

Parameters and functions are as set, but because
no frame memory has been assured, acquisition
cannot begin.

Frame memory has been assured and acquisition
can be started.

Image acquisition is currently being executed.

HAMAMATSU

DCAM-API Function Reference (August 2013)

This page intentionally left almost blank

HAMAMATSU

DCAM-API Function Reference (August 2013)

FUNCTION LIST

/I Initialization and termination processing

BOOL
BOOL
BOOL
BOOL
BOOL

dcam_init(void* reservedl, int32* pCount, const char* reserved?);
dcam_getmodelinfo(int32 index, int32 dwStringID, char* buf, _DWORD bytesize);
dcam_open(HDCAM?* ph, int32 index, const char* reserved);

dcam_close(HDCAM h));

dcam_uninit(void* reservedl, const char* reserved?2);

/I Camera information

BOOL
BOOL

dcam_getstring(HDCAM h, int32 dwsStringID, char* buf, _DWORD bytesize);
dcam_getcapability(HDCAM h, _DWORD* pCapability, DWORD dwCapTypelD);

/I Format of transmitted data

BOOL
BOOL
BOOL
BOOL

dcam_getdatatype(HDCAM h, DCAM_DATATYPE* pType);
dcam_getbitstype(HDCAM h, DCAM_BITSTYPE* pType);
dcam_setdatatype(HDCAM h, DCAM_DATATYPE type);
dcam_sethitstype(HDCAM h, DCAM_BITSTYPE type);

/I Image size

BOOL
BOOL
BOOL
BOOL

dcam_getdatasize(HDCAM h, SIZE* pSize);
dcam_getbitssize(HDCAM h, SIZE* pSize);
dcam_getdatasizeex(HDCAM h, DCAM_SIZE* pSize);
dcam_getbitssizeex(HDCAM h, DCAM_SIZE* pSize);

/I Parameter acquisition

BOOL
BOOL
BOOL
BOOL
BOOL

dcam_queryupdate(HDCAM h, _DWORD* pFlag, _DWORD reserved);
dcam_getbinning(HDCAM h, int32* pBinning);
dcam_getexposuretime(HDCAM h, double* pSec);
dcam_gettriggermode(HDCAM h, int32* pMode);
dcam_gettriggerpolarity(HDCAM h, int32* pPolarity);

/I Parameter setting

BOOL
BOOL
BOOL
BOOL

dcam_setbinning(HDCAM h, int32 binning);
dcam_setexposuretime(HDCAM h, double sec);
dcam_settriggermode(HDCAM h, int32 mode);
dcam_settriggerpolarity(HDCAM h, int32 polarity);

/I Capture control

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

dcam_precapture(HDCAM h, DCAM_CAPTUREMODE mode);
dcam_getdatarange(HDCAM h, int32* pMax, int32* pMin);
dcam_getdataframebytes(HDCAM h, _DWORD* pSize);

dcam_allocframe(HDCAM h, int32 framecount);

dcam_getframecount(HDCAM h, int32* pFrame);

dcam_capture(HDCAM h));

dcam_firetrigger(HDCAM h);

dcam_idle(HDCAM h);

dcam_wait(HDCAM h, DWORD* pCode, _DWORD timeout, HDCAMSIGNALabort);
dcam_getstatus(HDCAM h, _DWORD?* pStatus);

dcam_gettransferinfo(HDCAM h, int32* pNewestFramelndex, int32* pFrameCount);
dcam_freeframe(HDCAM h);

/I User Memory Support

BOOL
BOOL

dcam_attachbuffer(HDCAM h, void** frames, _DWORD size);
dcam_releasebuffer(HDCAM h);

HAMAMATSU

DCAM-API Function Reference (August 2013)

/I Data access and LUTs

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

dcam_lockdata(HDCAM h, void** pTop, int32* pRowbytes, int32 frame);
dcam_lockbits(HDCAM h, BYTE** pTop, int32* pRowbytes, int32 frame);
dcam_unlockdata(HDCAM h);

dcam_unlockbits(HDCAM h);

dcam_sethitsinputlutrange(HDCAM h, int32 inMax, int32 inMin);
dcam_setbitsoutputlutrange(HDCAM h, BYTE outMax, BYTE outMin);

/I Extended function

BOOL

dcam_extended(HDCAM h, _ui32 iCmd, void* param, _DWORD size);

/I Error information

int32

dcam_getlasterror(HDCAM h, char* buf, _DWORD bytesize);

HAMAMATSU

DCAM-API Function Reference (August 2013)

USING THE DCAM-API FROM AN APPLICATION

When a digital camera is being controlled using the DCAM-API, functions should be
called using the following procedure.

* Initialize the camera.

» Set the camera parameters.

» Start capturing data.

» Make sure capturing has been completed, and acquire data.
» Carry out the camera termination processing.

* Obtain error information.

10 HAMAMATSU

DCAM-API Function Reference (August 2013)

Initialization and termination processing
Functions

/I Initializes the driver

BOOL dcam_init(void* reservedl, int32* pCount, LPCSTR reserved?2);

/I Gets camera product information

BOOL dcam_getmodelinfo(int32 index, int32 dwStringID, char* buf, _DWORD bytesize);
/I Initializes camera

BOOL dcam_open(HDCAM* ph, int32 index, LPCSTR reserved);

/I Processes camera termination

BOOL dcam_close(HDCAM h);

/I Terminates the driver

BOOL dcam_uninit(void* reservedl, LPCSTR reserved?);

Call timing

First, the driver is initialized. When the application installation handle is transferred
and initialization has been successfully completed, the number of cameras that can
be controlled is obtained.

The camera initialization function is executed when a camera is initialized. This is
executed when an application is booted, for instance. Other functions will not work
correctly until the initialization function has been executed.

The camera termination processing function is used for closing, when a camera
has been held (assured), or resources are being released. This is executed when
control of the digital camera is no longer needed, for instance, when the application
is exited. When the termination function is called, other functions will not work
properly until the initialization function is called again.

Driver initialization

Cameras are initialized using the dcam_init() function. This function initializes a
frame grabber or serial port required by the digital camera, and enables control of
the digital camera.

HAMAMATSU =

12

DCAM-API Function Reference (August 2013)

Camera product information

Before the dcam_open() function is used, the product information for the camera
can be obtained.

DCAM_IDSTR_VENDOR
DCAM_IDSTR_MODEL
DCAM_IDSTR_BUS
DCAM_IDSTR_CAMERAID
DCAM_IDSTR_CAMERAVERSION
DCAM_IDSTR_DRIVERVERSION
DCAM_IDSTR_MODULEVERSION
DCAM_IDSTR_DCAMAPIVERSION

Example

DCAM_IDSTR_VENDOR
DCAM_IDSTR_MODEL
DCAM_IDSTR_BUS
DCAM_IDSTR_CAMERAID
DCAM_IDSTR_CAMERAVERSION
DCAM_IDSTR_DRIVERVERSION
DCAM_IDSTR_MODULEVERSION
DCAM_IDSTR_DCAMAPIVERSION

Camera initialization

Vendor information

Product name

Name of bus being used by camera

Name identifying the camera

Camera version

Driver version

Version of DCAM Module

Version of DCAM-API the Module supports

Hamamatsu
C4742-95-12NRG
IEEE-1394 OHCI
9X0001

1.00.14
4.00.1998

2121

212

Cameras are initialized using the dcam_open() function. This function obtains the
necessary camera handle used by other DCAM-API functions.

Termination processing

Termination processing of a camera is carried out using the dcam_close() function.
Calling this function releases the frame grabber or serial port being used for the
digital camera. After this function has been called, the digital camera can no longer
be controlled.

HAMAMATSU

DCAM-API Function Reference (August 2013)

Camera information
Functions

/I Gets camera information in the form of a character string

BOOL dcam_getstring(HDCAM h, int32 dwStringID, char* buf, _DWORD bytesize);

/I Gets functions supported by the camera

BOOL dcam_getcapability(HDCAM h, _DWORD* pCapability, DWORD dwCapTypelD);
Call timing

These functions can be used at any time after the camera has been opened.

Character string information

The “dwsStringlD” is specified using the dcam_getstring() function, allowing various
types of data to be obtained.

DCAM_IDSTR_VENDOR
DCAM_IDSTR_MODEL
DCAM_IDSTR_BUS
DCAM_IDSTR_CAMERAID
DCAM_IDSTR_CAMERAVERSION
DCAM_IDSTR_DRIVERVERSION
DCAM_IDSTR_MODULEVERSION
DCAM_IDSTR_DCAMAPIVERSION

Vendor information

Product name

Name of bus being used by camera

Name identifying the camera

Camera version

Driver version

Version of DCAM Module

Version of DCAM-API the Module supports

Example

Hamamatsu
C4742-95-12NRG
IEEE-1394 OHCI

DCAM_IDSTR_VENDOR
DCAM_IDSTR_MODEL
DCAM_IDSTR_BUS

DCAM_IDSTR_CAMERAID 9X0001
DCAM_IDSTR_CAMERAVERSION 1.00.14
DCAM_IDSTR_DRIVERVERSION 4.00.1998
DCAM_IDSTR_MODULEVERSION 21.21
DCAM_IDSTR_DCAMAPIVERSION 21.2

The ASCII code returns the character string. Any value between 32 (blank) and 126
(~ tilde) can be used.

HAMAMATSU 12

14

DCAM-API Function Reference (August 2013)

Capability information

The dcam_getcapability() function can be used to obtain various kinds of

information that the camera has.

DCAM_QUERYCAPABILITY_FUNCTIONS
DCAM_QUERYCAPABILITY_DATATYPE

DCAM_QUERYCAPABILITY_BITSTYPE

DCAM_QUERYCAPABILITY_EVENTS

Functions which the camera has

Data formats that can be specified by
the camera

Bitmap format that can be specified by
the camera

return available events.

When the DCAM_QUERYCAPABILITY_FUNCTIONS are used, the function

information that the camera has is obtained.

DCAM_CAPABILITY_BINNING2
DCAM_CAPABILITY_BINNING4
DCAM_CAPABILITY_BINNINGS8
DCAM_CAPABILITY_TRIGGER_EDGE
DCAM_CAPABILITY_TRIGGER_LEVEL
DCAM_CAPABILITY_TRIGGER_POSI

DCAM_CAPABILITY_TRIGGER_NEGA

DCAM_CAPABILITY_USERMEMORY

DCAM_CAPABILITY_TRIGGER_SOFTWARE

2x2 binning possible
4x4 binning possible
8x8 binning possible
External trigger edge possible
External trigger level possible

Supports positive polarity for external
trigger

Supports negative polarity for external
trigger

Supports direct capturing to user
memory.

Supports software trigger.

HAMAMATSU

DCAM-API Function Reference (August 2013)

Format of transferred data

Function

/I Obtain current image data type

BOOL dcam_getdatatype(HDCAM h, DCAM_DATATYPE* pType);

/I Change image data type

BOOL dcam_setdatatype(HDCAM h, DCAM_DATATYPE pType);

// Obtain current bitmap type

BOOL dcam_getbitstype(HDCAM h, DCAM_BITSTYPE* pType);

/I Change bitmap type

BOOL dcam_setbitstype(HDCAM h, DCAM_BITSTYPE pType);

Call timing

The bitmap type and image data type are called before other parameters are set,

and before LUT settings are entered, to determine the operation mode of the digital
camera. Some digital cameras have multiple operation modes, and the parameter
values that can be set differ depending on the available modes.

Bitmap type

The following bitmap types can be used with the DCAM-API.

DCAM_BITSTYPE_INDEX8

DCAM_BITSTYPE_INDEX24

Image data type

256-color index color

24-bit full-color

The following types of image data can be used with DCAM-API.

DCAM_DATATYPE_UINT8

DCAM_DATATYPE_UINT16
DCAM_DATATYPE_RGB24
DCAM_DATATYPE_RGB48

8-bit integer type with no sign
16-bit integer type with no sign
24-bit color

48-bit color

Image size

Function

/I Obtains image data size

BOOL dcam_getdatasize(HDCAM h, SIZE* pSize);

/I Obtains bitmap image size

BOOL dcam_getbitssize(HDCAM h, SIZE* pSize);

Call timing

The image size is confirmed after the transfer data type and parameters have been

set. When data is obtained using the dcam_getdata() function and the
dcam_getbits() function, the image size should be obtained using these functions.

HAMAMATSU

DCAM-API Function Reference (August 2013)

Parameter setting and acquisition
Functions

/I Obtains status change
BOOL dcam_queryupdate(HDCAM h, _DWORD* pFlag, _DWORD dwReserved);;

/I Sets parameter

BOOL dcam_setbinning(HDCAM h, int32 binning);
BOOL dcam_setexposuretime(HDCAM h, double sec);
BOOL dcam_settriggermode(HDCAM h, int32 mode);
BOOL dcam_settriggerpolarity(HDCAM h, int32 pol);

/I Obtains parameter

BOOL dcam_getbinning(HDCAM h, int32* binning);
BOOL dcam_getexposuretime(HDCAM h, double* sec);
BOOL dcam_gettriggermode(HDCAM h, int32* mode);
BOOL dcam_gettriggerpolarity(HDCAM h, int32* pol);

Call timing

Settings and acquisition involving the digital camera are usually carried out before
capturing is done and after capturing has been completed. If the setting function is
called while data is being captured, the error code DCAMERR_BUSY may be
returned in some cases.

Status changes
The user can check to see if the camera status has changed.

DCAM_UPDATE_RESOLUTION Resolution has changed
DCAM_UPDATE_AREA Image size has changed
DCAM_UPDATE_DATATYPE Image data type has changed
DCAM_UPDATE_BITSTYPE Bitmap data type has changed
DCAM_UPDATE_EXPOSURE Exposure time has changed
DCAM_UPDATE_TRIGGER Trigger setting has changed

Items that have changed since the last time they were checked are obtained. When
updated information is obtained, the flag is reset, and is not set unless a further
change is made.

Binning
This is used to handle multiple pixels as a single pixel. Normally 1, 2, 4, or 8 can be

set for this parameter. Values that can be set differ depending on the camera. Be
sure to confirm values that can be set using dcam_getcapability().

HAMAMATSU

DCAM-API Function Reference (August 2013)

Exposure time

This specifies the exposure time for the camera. The reciprocal of this value does
not necessarily serve as the frame rate. This is because, in addition to the
exposure time, there are times when transfer time is required, and when external
trigger operation is being used. Also, depending on the camera, there may be times
when it is not possible to use the specified exposure time. If a precise exposure
time is required, use the acquisition function to acquire the exposure time, which
was actually specified.

Trigger mode

The method of synchronization can be specified. External edge triggers and
external level triggers can also be used, in addition to internal synchronization.

Trigger polarity

This changes the trigger polarity. Either positive or negative polarity can be
specified.

HAMAMATSU 7

DCAM-API Function Reference (August 2013)

18

Capture control

Functions

/I Prepares for capturing

BOOL dcam_precapture(HDCAM h, DCAM_CAPTUREMODE mode);

/I Assures acquisition frame and confirms

BOOL dcam_allocframe(HDCAM h, int32 framecount);

BOOL dcam_getframecount(HDCAM h, int32* pFrame);

/I Starts acquisition

BOOL dcam_capture(HDCAM h);

/I Aborts acquisition

BOOL dcam_idle(HDCAM h);

/I Interrupts acquisition and sets system in standby status

BOOL dcam_wait(HDCAM h, _DWORD?* pCode, DWORD timeout, HDCAMSIGNAL abort);
/I Gets capturing status

BOOL dcam_getstatus(HDCAM h, _DWORD* pStatus);

BOOL dcam_gettransferinfo(HDCAM h, int32* pNewestFramelndex, int32* pFrameCount);
/I Frees acquired frame

BOOL dcam_freeframe(HDCAM h);

Call timing

There are 7 types of capture control functions. First, calling the dcam_precapture()
function makes the camera available to capture data. At this point, you will to
specify the capture mode. Call the dcam_allocframe() function to allocate a frame
buffer. Call dcam_getframecount() function to check the frame count. Use
dcam_capture() to begin capturing. This function will return immediately. Use the
dcam_wait() function to wait for the next captured image data to become available
for processing. To terminate image capturing without waiting for it to end,
dcam_idle() function is called. When the image data is no longer needed, calling
dcam_freeframe() function releases the frame memory.

Types of capture operation modes

The following types of capture operation modes are available.

Snap This mode is used for capturing of a specified
number of images.

Sequence This mode is used for continuous capturing of
images. Image data is retained for a specified
number of images.

Preparation

The dcam_precapture() function is called in order to prepare to capture images.
The capture operation mode is specified here. This sets the camera to stable state.

Allocating frames

The dcam_allocframe() function is used to specify the number of image data
frames to be allocated for image capture. This sets the camera from stable state to
ready state.

The dcam_getframecount() function can be used to confirm the actual number of
frames allocated.

HAMAMATSU

DCAM-API Function Reference (August 2013)

Start

When the dcam_precapture() and dcam_allocframe() have been completed
successfully, the dcam_capture() function is used to begin capturing images and
sets the camera to busy state. This function has no arguments. Processing is
carried out based on the capture operation mode specified with the
dcam_precapture() function.

Wait

The dcam_wait() function is used to confirm that capturing of image data has been
completed. The arguments specify the wait time and the event handle used to abort
the capture. Consequently, in a multi-thread environment the wait time can be set
to “DCAM_WAIT_INFINITE” and the event handle conveyed.

Status acquisition

The dcam_getstatus() function is used to acquire the camera status. The
dcam_gettransferinfo() function is used to obtain the frame number and the number
of frames captured since the start of acquisition.

Abort

The dcam_idle() function is used to abort acquisition. This sets the camera from
busy state to ready state.

Freeing a frame

If access to image data is no longer necessary, the dcam_freeframe() function can
be used to free the frame buffer. Image data can no longer be accessed after the
buffer has been released. If the dcam_allocframe() function is called before the
frame buffer is released, the module assures the buffer once again.

HAMAMATSU 10

20

DCAM-API Function Reference (August 2013)

Shifts in camera status

Calling an API changes the camera status as shown below.

unstable stable ready busy
dcam_precapture()
>
dcam_allocframe()
>
dcam_capture()
—>
dcam_idle()
<
dcam_freeframe()
«—
dcam_setXXX()
«—

HAMAMATSU

DCAM-API Function Reference (August 2013)

User Memory

Functions

/I User Memory Support

BOOL dcam_getdataframebytes(HDCAM h, _DWORD* pSize);
BOOL dcam_attachbuffer(HDCAM h, void** frames, _DWORD size);
BOOL dcam_releasebuffer(HDCAM h);

Call timing

If you want to use the buffer allocated by your application memory, you can use
dcam_attachbuffer() function instead of dcam_allocframe(). dcam_attachbuffer()
assigns your allocated buffer as the capturing buffer. All image data will be written
directly to this buffer. When releasing this buffer, you must use
dcam_releasebuffer() instead of dcam_freeframe().

When you use the dcam_attachbuffer() function, dcam_lockdata() cannot be used.

Your application should get the required byte size for each frame by dcam_
getframebytes() function.

Attach Buffer

dcam_attachbuffer() function assigns your application allocated memory for
capturing. Your application should inquire the buffer size that the module requires
by using dcam_getdataframebytes() function.

Release Buffer

After the end of capturing, the module does not need assignment of user memory.

Your application should call dcam_releasebuffer() function to release it.

HAMAMATSU

DCAM-API Function Reference (August 2013)

Data access and LUTs
Functions

/I Accesses captured data
BOOL dcam_lockdata(HDCAM h, void** pTop, int32* pRowbytes, int32 frame);
BOOL dcam_unlockdata(HDCAM h);

/I Accesses bitmap data
BOOL dcam_lockbits(HDCAM h, BYTE** pTop, int32* pRowbytes, int32 frame);
BOOL dcam_unlockbits(HDCAM h);

/I Sets LUT for creating bitmap data
BOOL dcam_setbitsinputlutrange(HDCAM h, int32 max, int32 min);
BOOL dcam_setbitsoutputlutrange(HDCAM h, BYTE outMax, BYTE outMin);

Call timing

After the dcam_allocframe() function has been called, data can be accessed until
the dcam_freeframe() function is used to free the frame. LUT settings can be
entered any time after the camera has been opened. With the dcam_lockbits()
function, however, the LUT settings in effect at that point are used.

LUT

Many industrial-use monochrome digital cameras have more than 8 bits of output
per pixel. For this reason, they cannot display ordinary images without some type of
modification. To display the desired range of pixel data in the image, a conversion
table called a Look Up Table is used. This enables input of 8 bits or more to be
converted to the appropriate value for the image display.

Accessing data for displays

The dcam_lockbits() function can be used to access a specified frame as bitmap
data. There may be times when a lock cannot be applied if data is being captured
in the Snap or Sequence mode. A lock can be canceled by calling the
dcam_unlockbits() function.

Accessing captured data

The dcam_lockdata() function can be used to access the actual captured data, as it
is, for a specified frame.

Index color

256-color bitmapping uses index color with a palette. Because this color information
is specified by the application, the DCAM module does not know the range to be
used. The application uses the dcam_setbitsoutputlutrange() function to specify the
index color to be used.

HAMAMATSU

DCAM-API Function Reference (August 2013)

Extended function
Function

/I Executes an extended function.
BOOL dcam_extended(HDCAM h, _ui32 iCmd, void* param, _DWORD size);

Call timing

This can be used after the application has been opened.

Function

The dcam_extended() function allows you to access camera functions that cannot
be accessed through the general DCAM-API interface. For detailed information,
please refer to the separate reference manual on DCAM-API extended functions.

Error information

Function

/I Obtains error information
int32 dcam_getlasterror(HDCAM h, char* buf, _DWORD bytesize);

Call timing

This can be used after the application has been opened.

Function

This obtains error codes generated by the various cameras.

HAMAMATSU 2

DCAM-API Function Reference (August 2013)

SAMPLES

Initialization and termination processing

int main(int argc, char** argv)

{

HDCAM h;

/' Initializes a driver
int nCamera;
if(! dcam_init(NULL, &nCamera))

/I Driver error
return 0O;

}
iftnCamera==0))

/I No camera
return O;

}

/I Initializes a camera
if(! dcam_open(&h, 0))
{

/I Camera error
return O;

}

/I Application can use h as HDCAM.
/I Carries out termination processing for a camera

dcam_close(h);
return O;

HAMAMATSU

DCAM-API Function Reference (August 2013)

Image capturing and data transfer

BOOL getdata(HDCAM h, unsigned short* dst, int32 dRow, int frame);

BOOL snap(HDCAM h, unsigned short* buf, int32 rowbytes)
{

BOOL ret= FALSE;

/I Prepares for camera capture

if(dcam_precapture(h, DCAM_CAPTUREMODE_SNAP)
&& dcam_allocframe(h, 1))
{
// Begins capture
_DWORD dw = DCAM_EVENT_CYCLEEND;
if(dcam_capture(h)

&& dcam_wait(h, &dw, DCAM_WAIT_INFINITE, NULL)
&& getdata(h, buf, rowbytes, 0))

{
ret = TRUE;
}
}
return ret;

}

BOOL getdata(HDCAM h, unsigned short* dst, int32 dRow, int frame)
{

unsigned short* src;

int32 sRow, row;

SIZE sz;

if(dcam_getdatasize(h, &sz) == FALSE)
return FALSE;

if(dcam_lockdata(h, &src, &sRow, 0) == FALSE)
return FALSE;

row = min(abs(dRow), abs(sRow));

for(inty = 0; y < sz.cy; y++) {
memcpy(dst, src, row);
src = (unsigned short*)((char*)src + sRow);
dst = (unsigned short*)((char*)dst + dRow);

}
return TRUE;

HAMAMATSU

DCAM-API Function Reference (August 2013)

26

Use User Memory

BOOL snap(HDCAM h, unsigned short** buf, int32 framecount)

{

_DWORD bufsize;

void*
BOOL

buf[3];
ret = FALSE;

/I Prepares for camera capture

if(
&&

}

dcam_precapture(h, DCAM_CAPTUREMODE_SNAP)
dcam_getdataframebytes(h, & bufsize)) {
/I Allocate user memory
inti;
for(i =0;i < framecount; i++) {
buf[i] = malloc(bufsize);

// Begins capture
_DWORD dw = DCAM_EVENT_CYCLEEND;
if(dcam_attachbuffer(h, buf, sizeof(*buf) * framecount)
&& dcam_capture(h)
&& dcam_wait(h, &dw, DCAM_WAIT_INFINITE)) {
ret = TRUE;
}

dcam_releasebuffer(h);

return ret;

HAMAMATSU

DCAM-API Function Reference (August 2013)

REFERENCE

Types and constants
Error codes

Among the error codes used with the DCAM-API, the following values are defined.

DCAMERR_ABORT
DCAMERR_BUSY
DCAMERR_INVALIDHANDLE
DCAMERR_INVALIDPARAM
DCAMERR_NOMEMORY
DCAMERR_NOTIMPLEMENT
DCAMERR_NOTBUSY

DCAMERR_NOTREADY
DCAMERR_NOTSTABLE
DCAMERR_NOTSUPPORT

DCAMERR_TIMEOUT
DCAMERR_UNKNOWNBITSTYPE
DCAMERR_UNKNOWNDATATYPE
DCAMERR_UNKNOWNMSGID
DCAMERR_UNKNOWNPARAMID
DCAMERR_UNKNOWNSTRID
DCAMERR_UNREACH

DCAMERR_FAILOPEN

DCAMERR_FAILOPENBUS

DCAMERR_FAILOPENCAMERA

DCAMERR_FAILREADCAMERA

DCAMERR_FAILWRITECAMERA

DCAMERR_NOCAMERA
DCAMERR_NODRIVER
DCAMERR_NOMODULE
DCAMERR_NORESOURCE

DCAMERR_UNKNOWNCAMERA

DCAMERR_UNSTABLE

Processing was aborted.

Processing inhibited because of busy status.
Camera handle is invalid.

The parameter is invalid.

Insufficient memory

Function has not been implemented.

Camera is not busy state. Function is available
only during busy state.

Camera is not ready state.
Camera is not stable state.

Message ID is understood, but is not supported
by this driver.

Function returns by timeout.
Unknown bit transfer type ID.
Unknown data transfer type ID.
Unknown message ID.
Unknown parameter ID.
Unknown character string ID.

This routine may not be called. This is internal
error.

Error occurred when attempt was made to open
camera.

Error occurred when attempt was made to open
bus.

Error occurred when attempt was made to open
camera.

Error occurred when attempt was made to access
camera for reading.

Error occurred when attempt was made to access
camera for writing.

Camera does not exist.
Driver does not exist.
Module for driving camera does not exist.

I/O resource is not sufficient (other than available
memory or hard disk capacity).

Unknown camera was found, but is not
supported.

The camera status has not stabilized.

HAMAMATSU 2

DCAM-API Function Reference (August 2013)

DCAM_DATATYPE

These are pixel data types used in DCAM-API, and the following numeric values
are defined.

DCAM_DATATYPE_NONE
DCAM_DATATYPE_UINT8
DCAM_DATATYPE_UINT16
DCAM_DATATYPE_RGB24
DCAM_DATATYPE_RGB48

Used if “DATATYPE” has not been specified.
Unsigned 8-bit integer

Unsigned 16-bit integer

24-bit RGB color

48-hit RGB color

DCAM_BITSTYPE

This is the pixel shape for bitmap data, for which the following values are defined.
These are used with dcam_getbits().

8-bit index
24-bit RGB

DCAM_BITSTYPE_INDEX8
DCAM_BITSTYPE_RGB24

DCAM_QUERYCAPABILITY_xxx

This is the type when the camera is asked the function and data type.

DCAM_QUERYCAPABILITY_FUNCTIONS
DCAM_QUERYCAPABILITY_DATATYPE
DCAM_QUERYCAPABILITY_BITSTYPE

DCAM_CAPABILITY_xxx

asks the available functions
asks the available data type

asks the available bitmap bits type

This is a graph that shows the functions supported by the camera.

DCAM_CAPABILITY_BINNING2
DCAM_CAPABILITY_BINNING4
DCAM_CAPABILITY_BINNINGS8
DCAM_CAPABILITY_TRIGGER_EDGE
DCAM_CAPABILITY_TRIGGER_LEVEL
DCAM_CAPABILITY_TRIGGER_POSI

DCAM_CAPABILITY_TRIGGER_NEGA

DCAM_CAPABILITY_USERMEMORY

DCAM_CAPABILITY_TRIGGER_SOFTWARE

Supports 2 x 2 binning.
Supports 4 x 4 binning.
Supports 8 x 8 binning.
Supports external trigger edge mode.
Supports external trigger level mode.

Supports positive polarity for external
trigger.

Supports negative polarity for external
trigger.

Supports direct capturing to user
memory.

Supports software trigger.

HAMAMATSU

DCAM-API Function Reference (August 2013)

DCAM_FRAMECOUNT_xxx

This is used when specifying the number of frames when capturing images.

DCAM_FRAMECOUNT_MAX

DCAM_STATUS_xxx

This is indicates the camera status.

DCAM_STATUS_BUSY
DCAM_STATUS_READY
DCAM_STATUS_STABLE
DCAM_STATUS_UNSTABLE

DCAM_EVENT_Xxx

Holds as many frames as possible

Image capture is in progress.
Image capture is enabled.
Camera settings can be entered.

Camera settings cannot be entered.

This indicates an event that occurred in the camera.

DCAM_EVENT_FRAMEBEGIN

DCAM_EVENT_FRAMEEND
DCAM_EVENT_CYCLEEND
DCAM_EVENT_VVALIDBEGIN
DCAM_EVENT_CAPTUREEND

Camera output has finished and Module just
starts to record.

Frame capture has been completed.
Cycle capture has been completed.
Camera just starts data output.

Camera stops capturing. This happens when
dcam_idle() is called or automatically stops after
capturing all images by
DCAM_CAPTUREMODE_SNAP.

All DCAM modules support DCAM_EVENT_FRAMEEND,
DCAM_EVENT_CYCLEEND and DCAM_EVENT_CAPTUREEND.

HAMAMATSU 29

30

DCAM-API Function Reference (August 2013)

DCAM_UPDATE_xxx

This indicates changes in the camera settings. When the application has called a
general function, there may be cases when changes are not recognized, such as
with some extended functions. When dcam_precapture() is used, the camera
status is assured. After that, the dcam_queryupdate() function can be used to

check the changed settings.

DCAM_UPDATE_RESOLUTION

DCAM_UPDATE_AREA

DCAM_UPDATE_DATATYPE

DCAM_UPDATE_BITSTYPE

DCAM_UPDATE_EXPOSURE

DCAM_UPDATE_TRIGGER

The resolution changed. Use dcam_getbinning()
to confirm the binning value.

The image size changed. Use
dcam_getdatasize() and dcam_getbitssize() to
confirm the data size.

The image data type changed. Use
dcam_getdatatype() to confirm the image data

type.

The bitmap type changed. Use
dcam_getbitstype() to confirm the bitmap type.

The exposure time changed. Use
dcam_getexposuretime() to confirm the exposure
time.

The trigger status changed. Use
dcam_gettriggermode()and
dcam_gettriggerpolarity() to confirm the trigger
status.

HAMAMATSU

DCAM-API Function Reference (August 2013)

Functions

BOOL dcam_allocframe(HDCAM h, int32 framecount);

BOOL dcam_attachbuffer(HDCAM h, void** pTop, _DWORD size);

BOOL dcam_capture(HDCAM h);

BOOL dcam_close(HDCAM h);

BOOL dcam_extended(HDCAM h, _ui32 iCmd, void* param, _DWORD size);
BOOL dcam_firetrigger(HDCAM h);

BOOL dcam_freeframe(HDCAM h);

BOOL dcam_getstatus (HDCAM h, _DWORD pStatus *);

BOOL dcam_getbinning(HDCAM h, int32* pBinning);

BOOL dcam_getbitssize(HDCAM h, SIZE* pSize);

BOOL dcam_getbitstype(HDCAM h, DCAM_BITSTYPE*pType)

BOOL dcam_getcapability(HDCAM h, _DWORD* dwCapability, DWORD dwCapTypelD);
BOOL dcam_getdataframebytes(HDCAM h, _DWORD* pSize);

BOOL dcam_getdatarange(HDCAM h, int32* pMax, int32* pMin);

BOOL dcam_getdatasize(HDCAM h, SIZE* pSize);

BOOL dcam_getdatatype(HDCAM h, DCAM_DATATYPE* pType);

BOOL dcam_getexposuretime(HDCAM h, double* pSec);

BOOL dcam_getframecount(HDCAM h, int32* pFrame);

int32 dcam_getlasterror(HDCAM h, char* buf, _DWORD bytesize);

BOOL dcam_getmodelinfo(int32 index, int32 dwStringID, char* buf, DWORD bytesize);
BOOL dcam_getstring(HDCAM h, int32 dwStringID, char* buf, DWORD bytesize);
BOOL dcam_gettransferinfo(HDCAM h, int32* pNewestFramelndex, int32* pFrameCount);
BOOL dcam_gettriggermode(HDCAM h, int32* pMode);

BOOL dcam_gettriggerpolarity(HDCAM h, int32* pPolarity);

BOOL dcam_idle(HDCAM h);

BOOL dcam_init(void* reservedl, int32* pCount, LPCSTR reserved?2);

BOOL dcam_lockbits(HDCAM h, BYTE** pTop, int32* pRowbytes, int32 frame);
BOOL dcam_lockdata(HDCAM h, void** pTop, int32* pRowbytes, int32 frame);
BOOL dcam_open(HDCAM* ph, int32 index, LPCSTR reserved);

BOOL dcam_precapture(HDCAM h, DCAM_CAPTUREMODE mode);

BOOL dcam_queryupdate(HDCAM h, DWORD* pFlag, _DWORD dwReserved);
BOOL dcam_releasebuffer(HDCAM h);

BOOL dcam_sethinning(HDCAM h, int32 binning);

BOOL dcam_setbitstype(HDCAM h, DCAM_BITSTYPE type),

BOOL dcam_setdatatype(HDCAM h, DCAM_DATATYPE type);

BOOL dcam_setexposuretime(HDCAM h, double sec);

BOOL dcam_sethitsinputlutrange(HDCAM h, int32 inMax, int32 inMin);

BOOL dcam_sethitsoutputlutrange(HDCAM h, BYTE outMax, BYTE outMin);
BOOL dcam_settriggermode(HDCAM h, int32 mode);

BOOL dcam_settriggerpolarity(HDCAM h, int32 polarity);

BOOL dcam_unlockbits(HDCAM h);

BOOL dcam_unlockdata(HDCAM h);

BOOL dcam_uninit(void* reservedl, LPCSTR reserved?2);

BOOL dcam_wait(HDCAM h, DWORD*pCode, DWORD timeout, HDCAMSIGNAL abort);

HAMAMATSU 3

DCAM-API Function Reference (August 2013)

dcam_allocframe()

Usage
DCAM-Module allocates image buffers for capturing.

Declaration

BOOL dcam_allocframe(HDCAM h, int32 frame);

Argument(s)
HDCAM h; specifies the camera.
int32 framecount; is number of frames to allocate.
Error value
DCAMERR_BUSY Camera is capturing now.
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_NOMEMORY Insufficient memory.
DCAMERR_NOTSTABLE Camera is not stable state.
Explanation

When the application calls this function, the module allocates the necessary
internal buffer for image acquisition. Capturing does not start at this time. To start
acquisition, the application has to call the dcam_capture() function. If the buffer is
no longer necessary, the application should call the dcam_freeframe() to release
the internal buffer.

The application can call this function again before calling the dcam_freeframe()
function. Any memory location received from dcam_lockdata() will be invalid.

If capturing has already started or preparation has not done, this function returns
FALSE.

Reference
dcam_capture, dcam_idle, dcam_freeframe, dcam_wait, dcam_getstatus,
dcam_getframecount

32 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_attachbuffer ()

Usage
DCAM Module assigns user specified memory as image capturing buffer

Declaration

BOOL dcam_attachbuffer(HDCAM h, void** top, DWORD bytesize);

Argument(s)
HDCAM h; specifies the camera.
void** top; is the array of pointer to buffer.
_DWORD bytesize; is size of top parameter in bytes.
Error value
DCAMERR_BUSY Camera is capturing now.
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_NOMEMORY Insufficient memory
DCAMERR_NOTSTABLE Camera is not stable state.
Explanation

This function sets the application allocated memory as capturing buffer. DCAM-
Module will capture directly from camera to these memory.

This function is available after calling the dcam_precapture() function and before
calling the dcam_capture() function, and the dcam_allocbuffer() function is
exclusive.

The application can get the required buffer size by using then
dcam_getdataframebytes() function. DCAM does not verify if the frame buffer
pointers are valid. System may hang up if a wrong address is used.

If the buffer is no longer necessary, the application should call the
dcam_releasebuffer() to release the buffer from DCAM.

Reference
dcam_capture, dcam_idle, dcam_releasecapture, dcam_getdataframebytes

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_capture()

Usage
Start capturing images.

Declaration
BOOL dcam_capture(HDCAM h);

Argument(s)
HDCAM h;

Error value
DCAMERR_BUSY

DCAMERR_INVALIDHANDLE
DCAMERR_NOTREADY

Explanation

specifies the camera.

Camera is already capturing.
Invalid camera handle.

Camera is not ready state.

This function should be called in ready state when the capture mode has been
determined and frame memory has been allocated.

The capturing mode is specified at the dcam_precapture() function.

If the mode is the Sequence mode, the camera captures the images repeatedly.
When more frames are captured than have been allocated, DCAM will loop back to

the start of the buffer.

If the mode is the Snap mode, DCAM will go into the idle state after capturing the

number of prepared buffer.

When this function is called in the idle status, capturing is resumed.

Reference

dcam_precapture, dcam_idle, dcam_freeframe, dcam_wait, dcam_getstatus

34 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_close()

Usage
Terminate and close a camera.

Declaration

BOOL dcam_close(HDCAM h);

Argument(s)

HDCAM h; specifies the camera.
Error value

DCAMERR_INVALIDHANDLE Invalid camera handle.
Explanation

This function terminates camera processing and closes camera handle. Once this

function is called, the camera handle can no longer be used.

DCAM will forcibly terminate any active capture session and release any image
buffers that have not been freed.

Reference
dcam_open

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_extended()

Usage
Use an extended function.

Declaration

BOOL dcam_extended(HDCAM h, UINT iCmd, LPVOID param, _DWORD size);

Argument(s)
HDCAM h; specifies the camera.
_ui32iCmd,; specifies the extended function to be executed.
void* param; is parameter for iCmd function, if necessary.
_DWORD size; is size of the parameter, if param is necessary,
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM Invalid parameter
DCAMERR_UNKNOWNMSGID This module does not support the command id.
Explanation

Camera functions that cannot be accessed with the general functions described in
this manual can be accessed using this extended function. For detailed information,
please refer to the separate Reference manual on DCAM-API extended functions.

_Ui32 is unsigned int32.

Reference

36 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_firetrigger()

Usage
Fire software trigger.

Declaration

BOOL dcam_firetrigger(HDCAM h);

Argument(s)

HDCAM h; specifies the camera.
Error value

DCAMERR_NOTBUSY Camera is not capturing.
Explanation

This function fires external trigger by software. This function is not available on all
cameras. The application should check if this is available by using the
dcam_getcapability() function.

This function can only be used while in busy state and trigger mode has been set to
DCAM_TRIGMODE_SOFTWARE. If called while not in busy state, this function
returns FALSE with an error value of DCAMERR_NOTBUSY.

Reference
dcam_getcapability, dcam_settriggermode, dcam_getstatus

HAMAMATSU 3

DCAM-API Function Reference (August 2013)

dcam_freeframe()

Usage
Frees the image buffer.

Declaration

BOOL dcam_freeframe(HDCAM h);

Argument(s)

HDCAM h; specifies the camera.
Error value

DCAMERR_BUSY Camera is capturing now.
Explanation

DCAM releases the image buffer allocated in the dcam_allocframe() function.

If capturing is in progress, this function returns FALSE with an error value of
DCAMERR_BUSY to notify the user that the camera is in busy status.

Reference
dcam_precapture, dcam_capture, dcam_idle, dcam_wait, dcam_getstatus,
dcam_getframecount

38 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getbinning()

Usage
Get current binning mode.

Declaration

BOOL dcam_getbinning(HDCAM h, int32* pBinning);

Argument(s)

HDCAM h; specifies the camera.

int32* pBinning; the pointer to receive the number of binnings.
Error value

DCAMERR_INVALIDHANDLE Invalid camera handle.

DCAMERR_NOTSUPPORT The camera does not support binning.
Explanation

DCAM returns the current binning mode of the camera.

Reference
dcam_setbinning

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getbitssize()

Usage
Get the width and height of bitmap bits.

Declaration

BOOL dcam_getbitssize(HDCAM h, SIZE* pSize);

Argument(s)
HDCAM h; specifies the camera.
SIZE* pSize; is the pointer to receive the bitmap width and
height.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pSize is NULL
Explanation

DCAM has the function to make bitmap bits. This function returns the width and
height of bitmap bits in pixels. Please refer to the dcam_lockbits() function.

Changing some camera parameters may affect the bitmap size. For example, the
dcam_setbinning() function can change the bitmap size.

Reference
dcam_setbinning, dcam_getdatasize

40 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getbitstype()

Usage
Get the current bitmap bits type.

Declaration

BOOL dcam_getbitstype(HDCAM h, DCAM_BITSTYPE* pType);

Argument(s)s
HDCAM h; specifies the camera.
DCAM_BITSTYPE* pType; is the pointer to receive the bitmap bits type.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pType is NULL
Explanation

DCAM returns the current bitmap bits type of the camera.

Reference
dcam_setbitstype, dcam_getdatatype

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getcapability()

Usage
Get the camera capability.

Declaration

BOOL dcam_getcapability(HDCAM h, DWORD* pdwCapability, DWORD dwCapTypelD);

Argument(s)
HDCAM h; specifies the camera.
_DWORD*pdwCapability; is pointer to _DWORD for camera capability.
_DWORD dwCapTypelD; specifies the type about which the camera is to be
gueried.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pdwCapability is NULL
DCAMERR_UNKNOWNPARAMID dwCapTypelD is not supported by this module.
Explanation

You can choose one of following values for dwCapTypelD parameter to get
specified information.

DCAM_QUERYCAPABILITY_FUNCTIONS General capabilities of the camera
DCAM_QUERYCAPABILITY_DATATYPE Data types that can be set to the camera
DCAM_QUERYCAPABILITY_BITSTYPE Bitmap types that can be set to the
camera
Reference

dcam_setbinning, dcam_getbinning, dcam_settriggermode, dcam_gettriggermode,
dcam_gettriggerpolarity, dcam_settriggerpolarity

42 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getdataframebytes()

Usage
Get the current frame buffer byte size.

Declaration

BOOL dcam_getdataframebytes(HDCAM h, _DWORD* pSize);

Argument(s)s
HDCAM h; specifies the camera.
_DWORD* pSize; is pointer to _DWORD for byte per frame
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pSize is NULL
Explanation

This function returns the byte size per frame in the pSize parameter.

Reference
dcam_setbinning, dcam_getbitssize

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getdatarange()

Usage
Get the current data range.

Declaration

BOOL dcam_getdatarange(HDCAM h, int32* pMax, int32* pMin);

Argument(s)
HDCAM h; specifies the camera.
int32* pMax; is Pointer to int32 for maximum value of the
camera output
int32* pMin; is Pointer to int32 for the minimum value for the
camera output
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pMax or pMin is NULL.
Explanation

This function returns the camera output range into the pMax and pMin parameters.
The values returned the maximum and minimum possible values of the output data
of the camera in the current settings. These values may not represent the
maximum and minimum values of current image data.

Reference
dcam_sethitsinputrange

4 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getdatasize()

Usage
Get the width and height of the image data.

Declaration

BOOL dcam_getdatasize(HDCAM h, SIZE* pSize);

Argument(s)s
HDCAM h; specifies the camera.
SIZE* pSize; is the pointer to receive the width and height of
the image data.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pSize is NULL
Explanation

This function returns the data size of the camera in the current settings in pixels.

Changing some camera parameters may affect the data size. For example, the
dcam_setbinning() function can change the data size.

Reference
dcam_setbinning, dcam_getbitssize

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getdatatype()

Usage
Get the current image data type.

Declaration

BOOL dcam_getdatatype(HDCAM h, DCAM_DATATYPE* pType);

Argument(s)s
HDCAM h; specifies the camera.
DCAM_DATATYPE* pType; is the pointer to receive the image type.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pType is NULL
Explanation

This function returns the current data type of the camera.

Reference
dcam_setdatatype, dcam_getbitstype

4 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getexposuretime()

Usage
Get the current exposure time.

Declaration

BOOL dcam_getexposuretime(HDCAM h, double* pSec);

Argument(s)
HDCAM h; specifies the camera.
double* pSec; is the pointer to get current exposure time.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pSec is NULL
DCAMERR_NOTSUPPORT The camera is not supported.
Explanation

This function returns the current exposure time of the camera.

Reference
dcam_setexposuretime

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getframecount()

Usage
Get the number of prepared frames.

Declaration

BOOL dcam_getframecount(HDCAM h, int32* pCount);

Argument(s)
HDCAM h; specifies the camera.
int32* pCount; is the pointer to get the number of prepared
frames.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pCount is NULL
DCAMERR_NOMEMORY No frames are reserved.
Explanation

This function returns the number of prepared frames. The prepared frames may
refer to the frames allocated with dcam_allocframe() or the buffers attached with
dcam_attachbuffer().

Reference
dcam_allocframe

4 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getlasterror()

Usage
Get the last error code of the camera in current thread.

Declaration

int32 dcam_getlasterror(HDCAM h, char* buf = 0, _DWORD bytesize = 0);

Argument(s)
HDCAM h; specifies the camera.
char* buf ; is pointer of the buffer to receive the character
string information. Option.
int32 bytesize; is the size of the buffer to receive the character

string information. Option.

Returned value
The last error code occurred in current thread.

Explanation

This function will return the error code of the last DCAM function in the thread that
had failed. DCAM is capable of providing the last DCAM error of each thread used

in the application.

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getmodelinfo()

Usage
Get the camera information with camera index.

Declaration

BOOL dcam_getmodelinfo(int32 index, int32 dwStringID, char* buf, DWORD bytesize);

Argument(s)
int32 index; specifies the camera by index number.
int32 dwsStringID; is the index of information.
char* buf; is pointer to receive character strings.
_DWORD bytesize is the size of the receive buffer.

Returned values
If the return value is FALSE, this function is failed cause of:

index is wrong
dwsStringlID value is unsupported.
buf is NULL.

Explanation
This function provides camera information before opening the camera. You can
choose following values for dwStringID.

DCAM_IDSTR_VENDOR Vendor information
DCAM_IDSTR_MODEL Product name

DCAM_IDSTR_BUS Name of bus being used by camera
DCAM_IDSTR_CAMERAID Name identifying the camera
DCAM_IDSTR_CAMERAVERSION Camera version
DCAM_IDSTR_DRIVERVERSION Driver version

If the camera is already opened, the dcam_getstring() function can be used
instead.

“\0” is appended at the end of the character string even if the character string
information is longer than specified buffer size.

Reference
dcam_open, dcam_getstring

50 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getstatus()

Usage
Get the camera status.

Declaration

BOOL dcam_getstatus(HDCAM h, _DWORD* pStatus);

Argument(s)
HDCAM h;

_DWORD* pStatus;

Error value
DCAMERR_INVALIDHANDLE

DCAMERR_INVALIDPARAM

Explanation
Get the current status of the camera.

Status can be one of following.
DCAM_STATUS_BUSY
DCAM_STATUS_READY
DCAM_STATUS_STABLE
DCAM_STATUS_UNSTABLE

Reference

specifies the camera.

is pointer to receive camera status.

Invalid camera handle.
pStatus is NULL

Image capturing is in progress.
Image capturing is enabled.
Camera settings have been entered.

Camera settings have not been entered.

dcam_precapture, dcam_capture, dcam_wait, dcam_idle

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_getstring()

Usage
Get the camera information with camera handle.

Declaration

BOOL dcam_getstring(HDCAM h, int32 dwStringID, char* buf, DWORD bytesize);

Argument(s)s
HDCAM h; specifies the camera.
int32 dwsStringID; is the index of information.
char* buf; is pointer to receive character strings.
_DWORD bytesize is the size of the receive buffer.

Returned values

If the return value is FALSE, the dwStringID value is unsupported.

Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM buf is NULL
DCAMERR_UNKNOWNSTRID An invalid character string number has been
specified.
Explanation

This function is similar to dcam_getmodelinfo(), however this function provides
camera information only after the camera has been opened. You can choose
following values for dwStringID.

DCAM_IDSTR_VENDOR Vendor information
DCAM_IDSTR_MODEL Product name

DCAM_IDSTR_BUS Name of bus being used by camera
DCAM_IDSTR_CAMERAID Name identifying the camera
DCAM_IDSTR_CAMERAVERSION Camera version
DCAM_IDSTR_DRIVERVERSION Driver version

To get this information before opening the camera, use the dcam_getmodelinfo()
function.

“\0” is appended at the end of the character string even if the character string
information is longer than specified buffer size.

Reference
dcam_open, dcam_getmodelinfo

52 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_gettransferinfo()

Usage
Get the information of capturing.

Declaration

BOOL dcam_gettransferinfo(HDCAM h, int32* pNewestFramelndex, int32* pFrameCount = 0);

Argument(s)
HDCAM h; specifies the camera.
int32* pNewestFramelndex; is pointer to receive the number of the frame in
which the most recent data is stored.
int32* pFrameCount; is pointer to receive the number of frames
captured since the capture operation was begun.
If no frames have been captured, a value of -1 is
returned.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pNewestFramelndex is NULL
Explanation

This function will return the index of the newest available frame and the current
frame count.

Reference
dcam_precapture, dcam_capture, dcam_wait, dcam_idle, dcam_getstatus

HAMAMATSU 53

DCAM-API Function Reference (August 2013)

dcam_gettriggermode()

Usage

Get the current synchronization mode.

Declaration

BOOL dcam_gettriggermode(HDCAM h, int32* pMode);

Argument(s)s
HDCAM h;

int32* pMode;

Error value
DCAMERR_INVALIDHANDLE

DCAMERR_INVALIDPARAM
DCAMERR_NOTSUPPORT

Explanation

specifies the camera.

is pointer to get the synchronization mode.

Invalid camera handle.
pMode is NULL

The camera is not supported.

DCAM Module returns the current synchronization mode. The value is one of

following:
DCAM_TRIGMODE_INTERNAL
DCAM_TRIGMODE_EDGE
DCAM_TRIGMODE_LEVEL
DCAM_TRIGMODE_SOFTWARE

DCAM_TRIGMODE_TDI

DCAM_TRIGMODE_TDIINTERNAL
DCAM_TRIGMODE_START

DCAM_TRIGMODE_SYNCREADOUT

Reference

dcam_settriggermode, dcam_firetrigger

means the internal synchronization mode.
means the external synchronization edge mode.
means the external synchronization level mode.

means the software trigger mode. Trigger can be
fire by dcam_firetrigger() function.

means the camera captures images with TDI
mode and trigger will shift image vertically one
line.

means the camera captures images with TDI
mode without external trigger.

means the trigger changes the camera mode
from external trigger to internal.

means the trigger starts reading out. The
exposure time is the period between two triggers.

54 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_gettriggerpolarity()

Usage
Get the current external trigger polarity.

Declaration

BOOL dcam_gettriggerpolarity(HDCAM h, int32* pPolarity);

Argument(s)s
HDCAM h; specifies the camera.
int32* pPolarity; is pointer to receives the polarity of the external
trigger.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pPolarity is NULL
DCAMERR_NOTSUPPORT The camera is not supported.
Explanation
This function returns the polarity of the external trigger. The value can be one of
following:
DCAM_TRIGPOL_NEGATIVE negative polarity.
DCAM_TRIGPOL_POSITIVE positive polarity.
Reference

dcam_settriggerpolarity

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_idle()

Usage
Stop image capturing.

Declaration

BOOL dcam_idle(HDCAM h);

Argument(s)

HDCAM h; specifies the camera.
Error value

DCAMERR_INVALIDHANDLE Invalid camera handle.
Explanation

This function stops image capturing. If the camera is in the middle of capturing an
image, the capturing process is aborted and the image is invalid. If capturing is not
in progress, nothing happens.

If the capture mode is DCAM_CAPTUREMODE_SNAP and capturing has already
been completed, it is not necessary to use this function.

Reference
dcam_precapture, dcam_capture, dcam_freeframe, dcam_wait, dcam_getstatus

56 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_init()

Usage
Initializes DCAM-Manager and Modules.

Declaration

BOOL dcam_init(void* reservedl = 0, int32* pCount = 0, LPCSTR reserved2 = 0);

Argument(s)
void* reservedl; is rserved to NULL.
int32* pCount; is pointer to get the total number of available
cameras.
LPCSTR reserved?; is reserved to NULL.
Explanation

This function initializes DCAM-Manager and Modules. This function can only be
called once per instance of DCAM-API. If this function is called while an instance
of DCAM-API exists, this function will return FALSE. This function will return the
total number of supported cameras found on the system.

Reference
dcam_open, dcam_close

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_lockbits ()

Usage
Lock the bitmap data.

Declaration

BOOL dcam_lockbits(HDCAM h, BYTE** top, int32* rowbytes, int32 frame);

Argument(s)
HDCAM h; specifies the camera.
BYTE** top; is the pointer for the variable that receives the top
address of the bitmap data buffer.
int32* rowbytes; is the pointer to get offset byte value between a
line and next line. A negative value may be
returned in some cases.
int32 frame; is the number of the frame for which the bitmap
data is to be locked. if this value is -1, that means
the latest captured frame.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM top is NULL
DCAMERR_NOTREADY camera status is not ready. You need call the
dcam_allocframe() function.
Explanation

This function returns the bitmap bits pointer that the application can access to.
When access has been completed, the lock should immediately be canceled using
the dcam_unlockbits() function.

The format of the bitmap bits is specified with the dcam_setbitstype() function.

In Windows, the locked data can be used with SetDIBits() and other functions, as
bitmap data independent of any camera.

Reference
dcam_getsize, dcam_setbmptype, dcam_unlockbits, dcam_lockdata

58 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_lockdata()

Usage
Lock image data.

Declaration

BOOL dcam_lockdata(HDCAM h, void** top, int32* rowbytes, int32 frame);

Argument(s)
HDCAM h;

void** top;

int32* rowbytes;

int32 frame;

Error value
DCAMERR_INVALIDHANDLE

DCAMERR_INVALIDPARAM
DCAMERR_NOTREADY

Explanation

specifies the camera.

is the pointer for the variable that receives the
address of the first line of the image data buffer.

is the pointer to get offset byte value between a
line and next line. A negative value may be
returned in some cases.

is the number of the frame for which the image
data is to be locked. if this value is -1, that means
the latest captured frame.

Invalid camera handle.
top is NULL

camera status is not ready. You need call the
dcam_allocframe() function.

This function returns a pointer that the application can use to access the image
data. When access has been completed, the lock should immediately be canceled

with the dcam_unlockdata() function.

The format of the data is specified with the dcam_setdatatype() function.

Reference

dcam_getsize, dcam_setdatatype, dcam_unlockdata, dcam_lockbits

HAMAMATSU %

DCAM-API Function Reference (August 2013)

dcam_open()

60

Usage
Open the camera and return the camera handle.

Declaration

BOOL dcam_open(HDCAM?* ph, int32 index, LPCSTR reserved = 0);

Argument(s)s
HDCAM* ph; is the pointer to get the camera handle
int32 index; specifies the index of camera.
LPCSTR reserved; is reserved to NULL.

Explanation

This function initializes the camera at the specified index and returns a camera
handle.

Reference
dcam_init, dcam_close, dcam_extended

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_precapture()

Usage
Prepare for capturing images.

Declaration

BOOL dcam_precapture(HDCAM h, DCAM_CAPTUREMODE mode);

Argument(s)
HDCAM h; specifies the camera.
DCAM_CAPTUREMODE mode; specifies the capture mode.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_NOMEMORY Insufficient memory
DCAMERR_NOTSTABLE Camera is not stable state.
Explanation

You can choose a value from following for mode.

DCAM_CAPTUREMODE_SNAP One cycle of images are captured in this mode
Data takes priority in this mode.

DCAM_CAPTUREMODE_SEQUENCE Images are captured continuously in this mode
and data takes priority.

This function prepares the camera for image capturing and sets the camera to
STABLE state. This function only sets parameters necessary for image capturing
but does not actually initiate capturing. Capturing is initialized with the
dcam_capture() function.

Reference
dcam_capture, dcam_idle, dcam_wait, dcam_getstatus

HAMAMATSU

1

DCAM-API Function Reference (August 2013)

dcam_queryupdate()

Usage
Check the changing of the camera settings.

Declaration

BOOL dcam_queryupdate(HDCAM h, DWORD* pFlag, DWORD dwReserved= 0);

Argument(s)s
HDCAM h; specifies the camera.
_DWORD* pFlag; is pointer to receive the status change.
_DWORD dwReserved, is reserved to 0.

Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM pFlag is NULL

Explanation

DCAM keeps track when certain parameters have changed through the setting of
other functions. For example, the exposure time may be altered when a new
binning mode is set. This function returns information on parameters that have

changed.
DCAM_UPDATE_RESOLUTION Resolution has changed
DCAM_UPDATE_AREA Image size has changed
DCAM_UPDATE_DATATYPE Image data type has changed
DCAM_UPDATE_BITSTYPE Bitmap data type has changed
DCAM_UPDATE_EXPOSURE Exposure time has changed
DCAM_UPDATE_TRIGGER Trigger setting has changed

All update flags will reset to 0 when this function is called.

Reference
dcam_setbinning, dcam_getdatasize, dcam_wait

62 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_releasebuffer ()

Usage
Releases the attached buffer.

Declaration

BOOL dcam_releasebuffer(HDCAM h);

Argument(s)

HDCAM h; specifies the camera.
Error value

DCAMERR_BUSY Camera is capturing now.

DCAMERR_INVALIDHANDLE Invalid camera handle.
Explanation

This function is used to release the memory that had been previously attached to
DCAM with dcam_attachbuffer(). This function does not destroy that memory, but
only prevents DCAM from being able to access it.

Reference
dcam_attachbuffer

HAMAMATSU 02

DCAM-API Function Reference (August 2013)

dcam_setbinning()

Usage
Change the binning mode.

Declaration

BOOL dcam_sethinning(HDCAM h, int32 binning);

Argument(s)
HDCAM h; specifies the camera.
int32 binning; specifies the number of binnings.

Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM Camera is supported but binning value is wrong.
DCAMERR_NOTSTABLE Camera is not stable state.
DCAMERR_NOTSUPPORT Camera is not supported.

Explanation

This function changes the binning mode of the camera.

If the binning mode is changed, the image size changes. When transferring data,
the image size must be checked, using the dcam_getsize() function.

Reference
dcam_getsize, dcam_getbinning

64 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_setbitstype()

Usage
Change the bitmap bits type.

Declaration

BOOL dcam_sethitstype(HDCAM h, DCAM_BITSTYPE type);

Argument(s)s
HDCAM h; specifies the camera.
DCAM_BITSTYPE type; specifies the bitmap bits type.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_NOTSTABLE Camera is not stable state.
DCAMERR_UNKNOWNBITSTYPE The specified bitmap type is not supported.
Explanation

When the application calls the dcam_lockbits() function, the bitmap bits type is
same as that specifies in this function.

You can choose one of following value for type.

DCAM_BITSTYPE_INDEX8 256-color index color
DCAM_BITSTYPE_INDEX24 24-bit full color
Reference

dcam_setbitstype, dcam_getdatatype, dcam_lockbits

HAMAMATSU

65

DCAM-API Function Reference (August 2013)

dcam_setdatatype()

Usage
Change the data type for the image.

Declaration

BOOL dcam_setdatatype(HDCAM h, DCAM_DATATYPE type);

Argument(s)s
HDCAM h; specifies the camera.
DCAM_DATATYPE type; specifies the image type.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_NOTSTABLE Camera is not stable state.
DCAMERR_UNKNOWNDATATYPE The specified data type is not supported.
Explanation

This function set the camera mode to the data type specified. Here is a list of
possible choices, however not all are available to all cameras.

DCAM_DATATYPE_UINT8 8-bit integer, no sign

DCAM_DATATYPE_UINT16 16-bit integer, no sign

DCAM_DATATYPE_RGB24 24-bit RGB color

DCAM_DATATYPE_RGB48 48-bit RGB color
Reference

dcam_setdatatype, dcam_getbitstype, dcam_lockdata

66 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_setexposuretime()

Usage
Set the exposure time.

Declaration

BOOL dcam_setexposuretime(HDCAM h, double sec);

Argument(s)
HDCAM h;

double sec;

Error value
DCAMERR_INVALIDHANDLE

DCAMERR_NOTSUPPORT

Explanation

specifies the camera.

specifies the exposure time, in seconds.

Invalid camera handle.

The camera is not supported.

This function sets a new exposure time in seconds. For example, one millisecond is

specified as 0.001.

Depending on the camera, the exposure time that is being specified will not be the
actually exposure time set. The camera may round up to the next valid value. Use

the dcam_getexposuretime() function to get the actual exposure time that was set

in the camera.

Reference
dcam_getexposuretime

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_setbitsinputlutrange()

Usage

Set the input range of the LUT to make the bitmap bits.

Declaration

BOOL dcam_sethitsinputlutrange(HDCAM h, int32 inMax, int32 inMin = 0);

Argument(s)
HDCAM h; specifies the camera.
int32 inMax; specifies the maximum value for the input range.
int32 inMin; specifies the minimum value for the input range.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM Invalid parameter
Explanation

DCAM Module uses as the input range of the LUT when it makes bitmap data. To
specify the range for 8-bit data, the dcam_setbitsoutputlutrange() function is used.

Reference

dcam_getbits, dcam_setbitsoutputlutrange

68

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_setbitsoutputlutrange()

Usage
Set the output range of the LUT to make the bitmap bits.

Declaration

BOOL dcam_sethitsoutputlutrange(HDCAM h, BYTE outMax, BYTE outMin = 0);

Argument(s)
HDCAM h; specifies the camera.
BYTE outMax; specifies the maximum value for the output range.
BYTE outMin; specifies the minimum value for the output range.
Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM Invalid parameter.
Explanation

DCAM Module uses as the output range of the LUT when it makes bitmap data. To
specify the input range, the dcam_setbitsinputindexrange() function is used.

Reference
dcam_getbits, dcam_setbitsinputlutrange

HAMAMATSU 0

DCAM-API Function Reference (August 2013)

dcam_settriggermode()

Usage

Change the synchronization (trigger) mode.

Declaration

BOOL dcam_settriggermode(HDCAM h, int32 mode);

Argument(s)
HDCAM h;

int32 mode;

Error value
DCAMERR_INVALIDHANDLE

DCAMERR_INVALIDPARAM
DCAMERR_NOTSUPPORT

Explanation

specifies the camera.

specifies the synchronization (trigger) mode.

Invalid camera handle.
The parameter is invalid.

The camera does not support the specified trigger
mode.

This function sets the synchronization (trigger) mode of the camera. You can
choose a of trigger mode from following values. However not all values are

available for all cameras.
DCAM_TRIGMODE_INTERNAL
DCAM_TRIGMODE_EDGE
DCAM_TRIGMODE_LEVEL
DCAM_TRIGMODE_SOFTWARE
DCAM_TRIGMODE_TDI
DCAM_TRIGMODE_TDIINTERNAL

DCAM_TRIGMODE_START

DCAM_TRIGMODE_SYNCREADOUT

internal synchronization mode.
exposure begins with an external trigger source.

exposure begins with an external trigger and
exposure length is controlled by the length of the
pulse.

exposure begins when dcam_firetrigger() is
called.

external trigger shifts the image by one line and
one line is read out.

similar to TDI mode, but the camera controls the
timing.

the first image waits for an external trigger then
changes to internal trigger mode.

external trigger simultaneously reads out the
current image and starts a new image.

The dcam_settriggerpolarity() function is used to switch between the rising and
falling edge in Edge mode, and between High and Low for the effective level in

Level mode.

Reference

dcam_gettriggermode, dcam_settriggerpolarity, dcam_firetrigger()

70 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_settriggerpolarity()

Usage
Change the polarity of the external trigger mode.

Declaration

BOOL dcam_settriggerpolarity(HDCAM h, int32 polarity);

Argument(s)
HDCAM h; specifies the camera.
int32 polarity; A variable range is conveyed for obtaining the

logic of the external trigger mode.

Error value
DCAMERR_INVALIDHANDLE Invalid camera handle.
DCAMERR_INVALIDPARAM The parameter is invalid.
DCAMERR_NOTSUPPORT The camera is not supported.

Explanation

This function sets the logic of the external trigger. You can select the trigger polarity

from following values.
DCAM_TRIGPOL_NEGATIVE Negative logic.
DCAM_TRIGPOL_POSITIVE Positive logic.

In Edge mode, imaging begins at the rising edge with positive logic and at the

falling edge with negative logic. In Level mode, the exposure time is high level with

positive logic and low level with negative logic.

Reference
dcam_gettriggerpolarity

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_uninit()

72

Usage
Terminates DCAM-API.

Declaration

BOOL dcam_uninit(void* reservedl = 0, LPCSTR reserved2 = 0);

Argument(s)
void* reserved], is reserved to NULL.
LPCSTR reserved?; is reserved to NULL.
Explanation

This function will cleanup all resources and objects used by this DCAM. All open
cameras will be forcefully closed. Any resources used by the individual cameras
will also be freed. No new cameras can be opened.

Reference
dcam_init

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_unlockbits()

Usage
Cancel locking bitmap bits.

Declaration

BOOL dcam_unlockbits(HDCAM h);

Argument(s)

HDCAM h; specifies the camera.
Error value

DCAMERR_INVALIDHANDLE Invalid camera handle.
Explanation

This function cancels the locking bitmap bits by using the dcam_lockbits() function.

If locked bits is no longer necessary, the application should call this function as
soon as possible.

Reference
dcam_allocframe, dcam_lockbits, dcam_unlockdata

HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_unlockdata()

Usage
Cancel locking image data.

Declaration

BOOL dcam_unlockdata(HDCAM h);

Argument(s)

HDCAM h; specifies the camera.
Error value

DCAMERR_INVALIDHANDLE Invalid camera handle.
Explanation

This function unlocks the data buffer that was locked by the dcam_lockdata()
function. If locked data is no longer necessary, the application may call this function
to allow DCAM to use that data buffer for image capturing. A previously locked
frame is automatically unlocked when a new frame has been locked.

Reference
dcam_allocframe, dcam_lockdata, dcam_unlockbits

7 HAMAMATSU

DCAM-API Function Reference (August 2013)

dcam_wait()

Usage

The system waits for an event to be generated.

Declaration

BOOL dcam_wait(HDCAM h, DWORD* pCode, DWORD timeout = 0
, HDCAMSIGNAL abort = 0);

Argument(s)
HDCAM h;

_DWORD*pCode;

_DWORD timeout;
HDCAMSIGNAL abort;

Error value
DCAMERR_ABORT

DCAMERR_BUSY
DCAMERR_INVALIDHANDLE
DCAMERR_TIMEOUT

Explanation

specifies the camera.

specifies the wait status. One of the following
should be specified.

specifies the waiting time.

specifies an event handle, used to notify of an
abort request from an external source while
waiting.

Aborted by means of an event handle.
There are too many wait .
Invalid camera handle.

No event occur.

This function causes the thread to wait until the camera reaches a certain status

during capture.

You can choose following events.
DCAM_EVENT_FRAMEBEGIN
DCAM_EVENT_FRAMEEND
DCAM_EVENT_CYCLEEND
DCAM_EVENT_VVALIDBEGIN
DCAM_EVENT_CAPTUREEND

Waits for beginning of data recording.
Waits for a frame to be recorded
Waits for a cycle to be captured
Waits for beginning of camera output.

Waits for dcam_idle() to be called or after
capturing all images by
DCAM_CAPTUREMODE_SNAP.

All DCAM modules support DCAM_EVENT_FRAMEEND,
DCAM_EVENT_CYCLEEND and DCAM_EVENT_CAPTUREEND.

DCAM_WAIT_INFINITE can be used for infinite timeout.
HDCAMSIGNAL is event HANDLE on Windows, MPEventID on MacOSX.

Reference

dcam_precapture, dcam_capture, dcam_idle, dcam_freeframe, dcam_getstatus

HAMAMATSU

DCAM-API Function Reference (August 2013)

APPENDIX

A. Function Validation
Initialize and Termination

pre-init pre-open unstable,stableready,busy Function

ERROR ERROR OK dcam_getlasterror()
>> pre-open ERROR ERROR dcam_init()
ERROR OK OK dcam_getmodelinfo()
ERROR >> unstable ERROR dcam_open()
ERROR ERROR >> pre-open dcam_close()
OK >> pre-init >> pre-init dcam_uninit()

Prepare capturing

unstable stable ready busy Function

OK OK OK OK dcam_getstring()

OK OK OK OK dcam_getcapability()
OK*1 OK OK OK dcam_getbinning()

OK >>unstable not stable not stable dcam_setbinning()

unstable stable ready busy Function

OK*1 OK OK OK dcam_getdatatype()
OK*1 OK OK OK dcam_getbitstype()

OK >>unstable not stable not stable dcam_setdatatype()

OK >>unstable not stable not stable dcam_setbitstype()
OK*1 OK OK OK dcam_getdatasize()
OK*1 OK OK OK dcam_getbitssize()

OK OK OK OK dcam_getexposuretime()

OK OK OK OK dcam_gettriggermode()

OK OK OK OK dcam_gettriggerpolarity()

OK OK OK OK dcam_setexposuretime()

OK OK OK OK*2 dcam_settriggermode()

OK OK OK OK*2 dcam_settriggerpolarity()

unstable stable ready busy Function

OK OK OK OK dcam_queryupdate()
occur occur never never DCAM_UPDATE_RESOLUTION
occur occur never never DCAM_UPDATE_AREA
occur occur never never DCAM_UPDATE_DATATYPE
occur occur never never DCAM_UPDATE _BITSTYPE
occur occur occur occur DCAM_UPDATE_EXPOSURE
occur occur occur occur*2 DCAM_UPDATE_TRIGGER

HAMAMATSU

DCAM-API Function Reference (August 2013)

Capturing and other

unstable stable ready busy Function
OK OK not stable not stable dcam_precapture()
OK*1 OK OK OK dcam_getdatarange()
OK*1 OK OK OK dcam_getbuffersize()
not stable >> ready OK*3 busy dcam_attachbuffer()
not stable >>ready OK*4 busy dcam_allocframe()
OK OK OK OK dcam_getframecount()
notready not ready >> husy busy dcam_capture()
OK OK OK >>ready dcam_idle()
OK OK OK OK dcam_wait()
not busy not busy not busy OK dcam_firetrigger()
OK OK OK OK dcam_gettransferinfo()
OK OK OK busy dcam_freeframe()
OK OK OK busy dcam_releasebuffer()
unstable stable ready busy Function
notready not ready OK OK dcam_lockdata()
notready not ready OK OK dcam_lockbits()
OK OK OK OK dcam_unlockdata()
OK OK OK OK dcam_unlockbits()
OK OK OK OK dcam_setbitsinputlutrange()
OK OK OK OK dcam_setbitsoutputlutrange()
unstable stable ready busy Function

not support not support not support not support dcam_showpanel()

OK

OK OK OK dcam_extended()

HAMAMATSU

© 2000,2013 Hamamatsu Photonics K.K.

HAMAMA I su Homepage Address http: //www.hamamatsu.com

HAMAMATSU PHOTONICSK.K., Systems Division
812 Joko-cho, Hamamatsu City, 431-3196, Japan, Telephone: (81)53431-0124, Fax: (81)53-435-1574, E-mail:export @sys. hpk.co.jp

USA. and Canada: Hamamaisu Photonic Systems: 360 Foothill Road, Bridgewater, N.J. 08807-0910, U.SA, Telephone: (1)908-231-1116, Fax: (1)908-231-0852, E-maitusa@hamamatsu com
mbH gerstr.10, D-82211

Germany: Photonics D G g am Ammersee, Germany, Telephone: (49)8152-375-0, Fax:(49)8152-2658E-mailinfo@hamamatsu de

France: Hamamatsu Phobnics France SARL. 8, Rue du Saule Trapu, Parc duMoulin de Massy,91882 Massy Cedex, France, Telephone: (33) 169 53 7100, Fax: (33)1 6953 71 10E-mailfance@hamamatsu.com

United Kingdom: Hamamatsu Photonics UK Limited: Lough Point, 2 Gladbeck Way, Windmill Hil, Enfield, Middlesex EN2 7JA, United Kingdom, Telephone: (44)208-367-3560, Fax: (44 4,E- couk
North Europe: Hamamaisu Phobnics Norden AB: Smidesvagen 12, SE-171-41 Solna, Sweden, Telephone 3:

1-00, Fax: 1-01,
ftaly: Hamamatsu Photonics flalia SR.L: Srada dellaMoia, 1/E20020Arese(Miano), taly, Telephone: (39) 02-935 81 733, Fax: (39) 02-93581 741E-mailinfo@hamamatsu it

